
UCRL-TR-235781

Native Language Processing
using Exegy Text Miner

J. Compton

October 24, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

2

Native Language Processing
Using Exegy Text Miner

John Compton
 Computing Applications and Research

Lawrence Livermore National Laboratory

10/24/07

Executive Summary

Lawrence Livermore National Laboratory’s New Architectures Testbed recently evaluated
Exegy’s Text Miner appliance to assess its applicability to high-performance, automated native
language analysis. The evaluation was performed with support from the Computing Applications
and Research Department in close collaboration with Global Security programs, and institutional
activities in native language analysis.

The Exegy Text Miner is a special-purpose device for detecting and flagging user-supplied
patterns of characters, whether in streaming text or in collections of documents at very high
rates. Patterns may consist of simple lists of words or complex expressions with sub-patterns
linked by logical operators. These searches are accomplished through a combination of
specialized hardware (i.e., one or more field-programmable gates arrays in addition to general-
purpose processors) and proprietary software that exploits these individual components in an
optimal manner (through parallelism and pipelining). For this application the Text Miner has
performed accurately and reproducibly at high speeds approaching those documented by Exegy
in its technical specifications. The Exegy Text Miner is primarily intended for the single-byte
ASCII characters used in English, but at a technical level its capabilities are language-neutral and
can be applied to multi-byte character sets such as those found in Arabic and Chinese.

The system is used for searching databases or tracking streaming text with respect to one or more
lexicons. In a real operational environment it is likely that data would need to be processed
separately for each lexicon or search technique. However, the searches would be so fast that
multiple passes should not be considered as a limitation a priori. Indeed, it is conceivable that
large databases could be searched as often as necessary if new queries were deemed worthwhile.

Project Goals

This project is concerned with evaluating the Exegy Text Miner installed in the New
Architectures Testbed running under software version 2.0. The concrete goals of the evaluation
were to test the speed and accuracy of the Exegy and explore ways that it could be employed in
current or future text-processing projects at Lawrence Livermore National Laboratory (LLNL).
This study extended beyond this to evaluate its suitability for processing foreign language
sources. The scope of this study was limited to the capabilities of the Exegy Text Miner in the
file search mode and does not attempt simulating the streaming mode. Since the capabilities of
the machine are invariant to the choice of input mode and since timing should not depend on this
choice, it was felt that the added effort was not necessary for this restricted study.

3

Hardware/Software

The system used in this study is a single Exegy Text Miner with the basic configuration. This
means that only one type of search can be performed at a time (exact, approximate, or regular
expression), but within each of these types Boolean operators and proximity operators can be
applied. The encryption/decryption module was not included as extra hardware over and above
this basic capability. For the focused scope of this study, this additional hardware was not
deemed necessary.

The local hardware configuration for this study includes two Raid 0 partitions and two Raid 5
partitions of dedicated disk space (called “high-speed persistent cache” in the Exegy technical
specifications). Each partition is 1.2 terabytes for a total of 4.8 TB, of which only 4.4TB is
effectively usable. Our network connections consist of two 1 gigabit/sec, and two 10 Gb/sec
interfaces, all of the GigE variety. Exegy quotes its sustained throughput performance as 5.2
Gb/sec and its peak as 7.1 Gb/sec.

Internally the Text Miner has two AMD dual-core Opteron processors, and a Xilinx Virtex-4
FPGA board (with three FPGA’s). (For additional capability the number of FPGA’s can be
increased at added expense.)

The Exegy on-board software is accessible to the user through its API. (Interfaces are provided
for C, C++, Java, and Perl.) Exegy provided several test programs containing calls to this API
that provide the user with a UNIX command-line interface to the internal software of the Exegy.
These programs were used with little modification since they allowed for testing of all the
available search features. Some modifications of their software (C version) were made to allow
for more user-friendly display of search results in the case of the tests on the Arabic and Chinese
corpora.

Approach

The combination of high-performance disk drives, large input buffers, and internal
parallelization and pipelining make the Exegy ideal for high-speed scanning of an input stream
(for example, news articles) for the presence of user-defined strings (byte patterns) associated
with characters in word lists or other patterns that can be defined via regular expressions. The
user can also specify that matches of sub-patterns are contingent on proximity constraints with
other sub-patterns. For example, one can require that the words “stock” and “bond” will be
reported only if they occur within a fixed number of bytes from each other in the text.
Allowances for spelling errors and other imprecision are permitted through approximate
matching to a level (number of deviations) likewise specified by the user.

The software provided by Exegy was used for applying queries to one or more files at a time
(typically hundreds to thousands at a time). The source used for English queries consists of news
articles provided by Reuters for 1995-1996. Arabic and Chinese sources, also news articles from
several agencies, are from the ACE corpora provided by the Linguistic Data Consortium for the

4

year 2000. The Text Miner 2.0 software was evaluated for speed and accuracy in its various text
search modes.

Queries in Arabic

In order to formulate a query for foreign text it is necessary to know how that text is encoded.
The ACE documents used here for testing in Arabic and Chinese were encoded in Unicode, and
so the following examples conform to that model. Each character in Unicode (which spans a
large array of languages), regardless of the character set to which it belongs, has a unique
representation that is one to three bytes long. The most significant bits of the most significant
byte encode the character set, and the lower order bits encode the particular character. For
example, Arabic characters in their basic disconnected forms span the range 0600-06FF in
hexadecimal. These are sufficient for internal representation of a document in any of the many
languages that use some version of the Arabic alphabet, and they appear in the ACE corpus used
here. Two separate sets of presentation forms (the connected forms in which Arabic characters
actually appear on screen or a printed page) occupy the ranges FB50-FDFF and FE70-FEFF, but
are not needed for the queries made here.

An individual Arabic character code is embedded in Unicode as follows. We will use the letter
laam as an (ل) example. Its code is 0644 hex. We strip off the most significant four bits to get
644. These twelve bits (‘011001000100’) are then divided in half. The upper six bits are
appended to ‘11’ to give ‘11011001’ or D9 in hex. The lower six bits are appended to ‘10’ to
give ‘10000100’ or 84 in hex. So in the text laam appears in two sequential bytes as D984. (This
is the UTF-8 encoding form used in the ACE corpus. Other forms are possible but not used
here.) In order to construct the sequence for ‘Lebanon’ (‘lubnaan’ in Arabic, or لبنان) we will
need the additional characters baa’ nuun ,(ب) Their UTF-8 encodings for these .(ا) and ’alif ,(ن)
characters are D8A8, D986, and D8A7 hex, respectively. The sequence of characters for
‘lubnaan’ is laam, baa’, nuun, ’alif, nuun. Placing all these characters in a string for an exact-
match query results in, for example:

file-search -q 'EXACT:\xd9\x84\xd8\xa8\xd9\x86\xd8\xa7\xd9\x86' -f ./arab_data

In the following example we have the results of searching the corpus of Arabic news articles of
the year 2000 from the Linguistic Data Consortium’s (LDC) Automatic Content Extraction
(ACE) Project (http://projects.ldc.upenn.edu/ace/). The query was for any article containing the
Arabic equivalent of ‘America’ (أمریكا) or ‘Lebanon’ (لبنان). The following is an excerpt of the
results of that search:

./arab_data/bn/fp1/NTV20001016.1530.1140.sgm [2537 - (1) اكيرمأ :[2548
 ينا أن نعرف وأخيرا أن أمريكا هي مستعمرة إ <<<
./arab_data/bn/fp1/NTV20001016.1530.1140.sgm [2622 - (1) اكيرمأ :[2633
>>>
./arab_data/bn/fp2/NTV20001222.1530.0613.sgm [382 - (0) نانبل :[391
 الحدود الإسرائيلية اللبنانية بأنه حساس ج <<<
./arab_data/bn/fp2/NTV20001222.1530.0613.sgm [604 - (0) نانبل :[613
 شأ بسبب فشل الحكومة اللبنانية في فرض احتر <<<
./arab_data/bn/fp2/NTV20001222.1530.0613.sgm [910 - (0) نانبل :[919
 ائيليين ونشر الجيش اللبنان ي لإعادة السل <<<

5

./arab_data/bn/fp2/NTV20001222.1530.0613.sgm [999 - (0) نانبل :[1008
>>>
./arab_data/bn/fp2/NTV20001222.1530.0613.sgm [1040 - (0) نانبل :[1049
 بنان قد رفضت نشر قوات لبنانية في الجنوب ا <<<
./arab_data/bn/fp2/NTV20001222.1530.0613.sgm [1077 - (0) نانبل :[1086
 ت لبنانية في الجنوب اللبنان ي إلى أن يتم ا <<<

The first four lines of this output detail how two occurrences of ‘America’ occur in one article
(NTV20001016.1530.1140.sgm) at bytes 2537 – 2548 and 2622 – 2633. Following that are the
letters that spell out ‘America’ in Arabic, but since Arabic is written from right to left that are
backwards from the Arabic perspective. The ‘(1)’ simply indicates that ‘America’ follows
‘Lebanon’ (numbered ‘0’ below this) in the query not shown here. In lines 2 and 4 we can see the
context in which the word occurs. This time the order of the letters is correct, but they are not
connected to each other in the normal fashion, so we see ‘أمريكا’ or ‘’-m-r-ii-k-aa’ instead of
 or ‘’mriikaa’. (In addition, some context lines are blanks. These are only minor ’أمریكا‘
irregularities of software that was not written to accommodate foreign languages at all initially.
The fix is rather simple.) Note that short vowels are not written, and so the initial ‘a’ is
pronounced but not written. (There is no written or phonetic equivalent for the ‘e’ in “America”
either.) The initial (’) represents a glottal stop, a consonant in Arabic, required because a word in
Arabic must begin with a consonant. The remaining lines of the excerpt above represent six
occurrences of ‘Lebanon’ or some variant of it such as the equivalent of ‘Lebanese’ in another
article. The interpretation of these lines is exactly for those described above.

Queries in Chinese

Searches in Chinese are constructed in much the same way as for Arabic. The main difference is
in the number of possible characters to be used in a search (in the tens of thousands), and the fact
that the characters require two bytes for their individual codes (and three bytes for some rarely
used characters) and three bytes in the UTF-8 encoding. In order to look up the encoding one
needs to use a special on-line dictionary and enter either the phonetic spelling or an English
equivalent. One must also decide whether to use the simplified characters of the Chinese
mainland or the traditional character set in use elsewhere (depending upon the encoding of the
source documents.) So for example, if we want to search for ‘China’ (中国, zhong1 guo4), then
we look up the two encodings as 4E2D and 56FD, respectively. The first hex digit is appended to
‘1110’ and the last three digits are treated as with Arabic above to yield E4B8AD and E59BBD,
respectively. So now a query for ‘China’ looks like:

/file-search -q 'EXACT:\xe4\xb8\xad\xe5\x9b\xbd' -f ./chinese_data

In our next example we again use a corpus from LDC’s ACE project. We try a more
sophisticated query for the words ‘America’ (美国, mei3 guo4, literally “beautiful country,”

where the second character is the simplified version used in mainland China) and ‘China’ (中国,
zhong1 guo4, literally “middle country”). The digits in the Pinyin phonetic transcriptions (e.g., in
‘mei3’) are tone markings. In actual pronunciation the unstressed syllables ‘guo4’ in both words
drop their falling tones for a neutral tone. (The traditional version of ‘guo4’ used outside of

6

mainland China is ‘國’, which should be treated as equivalent to the simplified ‘国’ in any
search. Google does this. The alternative is to detect whether the article uses traditional or
simplified characters and apply the appropriate queries, which must then be maintained as two
separate sets.) Our query here (not shown) says that we should flag any occurrence of ‘America’
if it occurs within 50 bytes of ‘China’. This is known as a proximity match. The following is an
excerpt of the results:

./chinese_data/bn/fp1/CBS20001126.1000.0700.sgm [210 - 238]: 美国...中国 (-1)
>>> 国国务院发言人鲍瑞什表示，美国21号搁置因为中国大陆

./chinese_data/bn/fp1/CBS20001217.1000.0600.sgm [335 - 376]: 中国...美国 (-1)
>>> 联席会议主席希尔顿将军正在中国大陆进行首次的访问

Now we see in line 3 that ‘America’ (‘美国’) occurs some 9 characters before ‘China’ (‘中国’)
in the article CBS20001126.1000.0700.sgm . The first two intervening characters ‘2’ and ‘1’
take only one byte each, but the five Chinese characters ‘号搁置因为’ take three bytes each in
this particular encoding (Unicode UTF-8), for a total of 2+3×5 or 17 bytes in all, thus well within
the limit of 50 bytes of separation (which was chosen arbitrarily here). In the next article at line 4
‘China’ occurs before ‘America’. We can see ‘China’ in line 6 at bytes 335-376 of the article.
The location of ‘America’ is not indicated as the location of ‘China’ was in line 1 (simply a
peculiarity of the software that was being re-written at the time of the query). The ‘(-1)’ in lines
2 and 5 indicates a proximity match.

Timing Results

Several factors influence the speed with which the Text Miner can process text in the form
individual files. By far the biggest effect is the time required to read the files into the system. The
fastest rates we observed (about 850 megabytes/sec for exact matches and about 750 MB/sec for
regular expression matches) were achieved with text files already on local disk, that were
reasonably large (on the order of megabytes), and with the number of matches on the order of
tens of thousand per second or less. At the opposite extreme, if files are small or non-resident on
the local disk, or if the number of hits exceeds roughly 100,000/second then the rates drop. The
problem is that the operating system cannot satisfy the appetite of the hardware under these latter
circumstances (on input), or cannot store the output quickly enough if there are large numbers of
hits. Once the input/output barriers are overcome we observe a surge in performance levels that
is stable over a large range of queries, hundreds of which were tried in this study. (The barrier
effect will be illustrated below.)

We will quantify the observations above with some actual timings. First we emphasize the
extremes. A simple example is the query:

'(REGEX:"bond" andthen[50] REGEX:"stock")'

searches for the word ‘bond’ preceding ‘stock’ with a separation of 50 bytes or less. When an
entire year’s worth of Reuters news articles from 2000-2001 is scanned as individual files from a
non-local disk, the time is 6471 seconds, or nearly two hours, at a rate of 0.362 MB/sec. (The
number of hits is 1992, a relatively small number for such a large corpus of data.) When we
instead gather these articles into a few “.tar” files and place them on the local disk, we get a time

7

of 4 seconds and an ingest rate of 725 MB/sec. This is a speed-up of about 2000 times. This rate
was a bit lower than the maximum possible because we used the regular expression hardware,
needlessly as it turns out, since an exact match is simpler and gives the identical set of hits. So
for the query:

'(EXACT:"bond" andthen[50] EXACT:"stock")'

we get the fastest rates of 0.393 MB/sec and 837 MB/sec at the two extremes. Rates as high as
870 MB/sec were observed on other queries.

Now we look at the phenomenon of reduction of processing rates as a function of the number of
hits. We consider the query where we check for a sequence of five of the first n letters of the
alphabet (with n from 3 to 10) within 50 bytes of the same type of sequence. (The corpus is the
same Reuters news articles mentioned in the paragraph above.) For example, ‘ceded’ within 50
bytes of ‘ebbed’ constitutes a match for a value of n of 5 or greater, because the letters fall in the
range ‘a’ to ‘e’. The following table shows the scan rates:

The numbers in the second column represent the total number of sequences of 5 characters with
letters up to the nth in the corpus (that is, where n=3 represents ‘a’ through ‘c’ and so on), and
the third column represents the number of pairs of such sequences that occur within 50 bytes of
each other. Notice that the ingest rates rise dramatically for decreasing n and become quite stable
for n<8, that is, below a threshold of about 106 sequences and 105 hits. Clearly there is no input
bottleneck involved here since the same corpus is scanned each time. Some combination of
internal computation and/or output buffering must be responsible. (Below a purely computational
example will be given.)

Another effect is important, namely the case where files are already resident in a large internal
buffer (as when one performs a query twice in a row on data that does not exceed buffer size). In
that case the second and subsequent queries on the same data will be faster, but this is a
somewhat artificial situation and not of great interest.

A completely different influence on speed is computational in nature and has to do with
processing of data internally in the Text Miner. Let us assume that two queries A and B each
generate millions of matches in a data set. However, if A and B rarely occur near each other
inside a document, then the proximity query for A near B will be somewhere below peak speed,
even though the number of overall matches is small. Internally the Text Miner is forced to

n Total sequences Proximity hits Ingest rate
3 95,219 5456 752 MB/sec
4 125,371 5728 751 MB/sec
5 537,486 15,243 752 MB/sec
6 857,900 37,384 751 MB/sec
7 1,106,530 99,800 752 MB/sec
8 1,987,988 262,025 96.5 MB/sec
9 4,872,467 823,101 25.6 MB/sec

10 5,232,899 1,302,700 14.1 MB/sec

8

consider the proximity of millions of A hits to millions of B hits, which is computationally
intensive. The example query which shows this situation is somewhat artificial, but illuminating:

'("q" near[10] "v") andthen[12] ("x" near[4] "y")'

Here there are three proximity constraints. First, ‘q’ and ‘v’ (in either order) must be within 10
bytes of each other, ‘x’ and ‘y’ (again in either order) must be within 4 bytes of each other, and
in addition, the ‘q’ and ‘v’ must precede the ‘x’ and ‘y’ by 12 bytes or less (but not be
overlapping). These letters occur in the corpus with the following frequencies: ‘q’ 4,018,257
times, ‘v’ 15,415,318 times, ‘x’ 6,640,603 times, and ‘y’ 17,522,729 times. However, the set of
proximity conditions in the query restricts the total number of hits to only 479. The resulting
ingest rate is only 81 MB/sec, or about a tenth of the peak speed. Clearly the number of
proximity constraints that need to be checked is large enough to slow processing down. This is
necessarily due to purely computational overhead rather than input/output bottlenecks. This is a
very contrived example and such behavior was not observed in other queries.

Conclusions

As a result of this work it was possible to determine conditions that enable peak performance of
the Text Miner consistent with rates quoted by the vendor. Most important is to guarantee that
the hardware can be kept busy by minimizing latencies in inputting data. The most important
factors in this are to use large files (by concatenating smaller files if necessary) on the order of at
least a megabyte, and to place these files on one of the hardware’s local disks. Dividing up the
work among multiple disks was not found to be helpful, though it is possible that this approach
might be beneficial in some situations. To achieve good performance it is important to address
input/output bottlenecks.

Many hundreds of queries were performed to check the accuracy and performance of the
hardware and software. Some changes in the output format were made to make it clearer and
more consistent. Searches in non-Western foreign languages was tried for the first time on this
system and found to be very little different from searches in English.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

